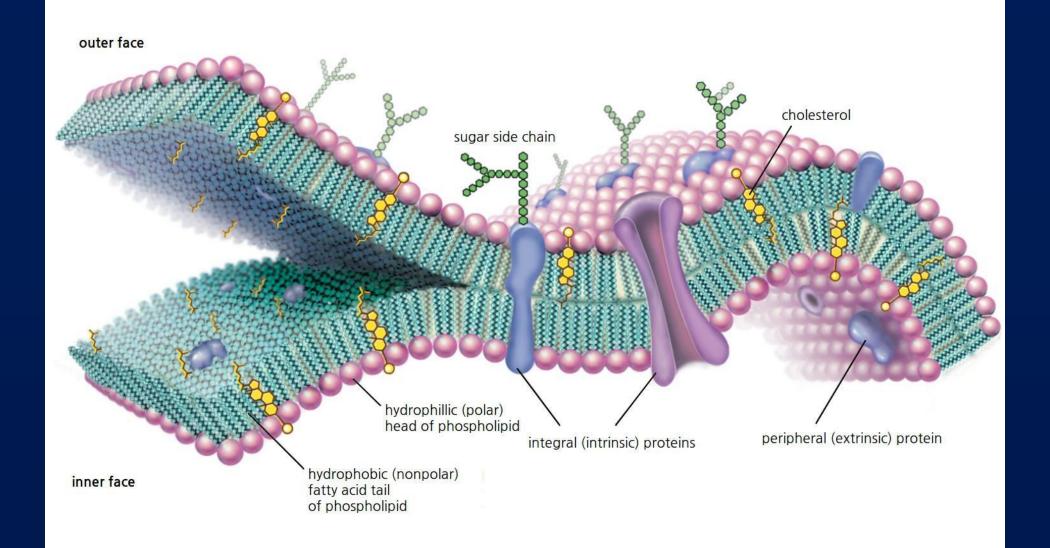
Omega-3: Mythen vs. Fakten

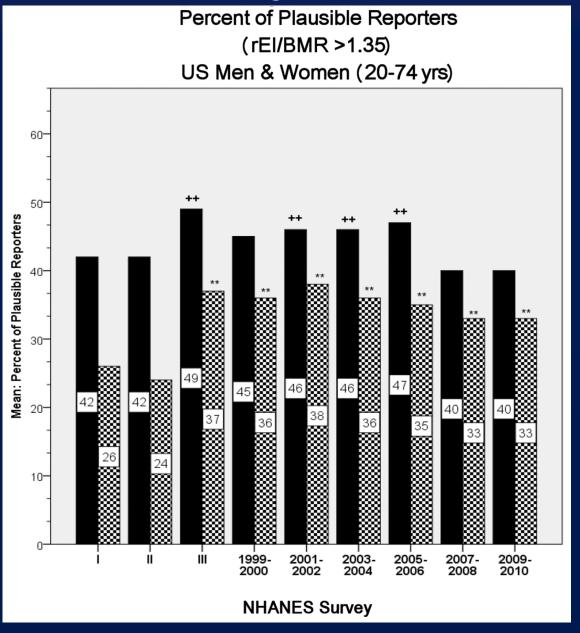

Nutridays, 26. März 2022

Prof. Dr. C. von Schacky, FESC Omegametrix, Martinsried c.vonschacky@omegametrix.eu

Interessenskonflikte

- Omegametrix
- Honore für Vorträge und Beratung: BASF/Pronova, Huntsworth Medical, Norsan

Erkennen Sie den Unterschied?



von Schacky, Ann Int Med 1987; 107:890; Plourde & Cunnane Appl Physiol Nutr Metab. 2007;32:619

Cohort	Source	Daily recommendation		
General health				
Adults	US Department of Agriculture	≥250 mg		
Adults	European Food Safety Agency	≥250 mg		
Adults	World Health Organization:	≥250 mg		
Adults	Academy of Nutrition and Dietetics	≥500 mg		
Adults without CHD	American Heart Association	~500 mg (fatty fish ≥ 2 times/week)		
Adults	International Society for the Study of Fatty Acids and Lipids	≥500 mg		
Pregnancy				
Pregnant/lactating	International Society for the Study of Fatty Acids and Lipids	≥500 mg (≥300 mg DHA)		
Pregnant/lactating	European Food Safety Agency	≥250 mg (100 to 200 mg DHA)		
Heart disease and inflammatory	disorders			
CHD	American Heart Association	~ 1 g		
Patients with high TG	American Heart Association	2 to 4 g		
Generally viewed as safe upper li	imit			
Population	US Food and Drug Administration	≤3 g EPA + DHA		
Population	European Safety Authority	5 g EPA + DHA		

Geringe Plausibilität von Ernährungsdaten, die auf Erinnerung beruhen

Verzehr = Aufnahme?

Variabilität der Bioverfügbarkeit verzehrter Omega-3 Fettsäuren

- Fettarme / Fettreiche Mahlzeit: bis Faktor 13

- Chemische Form: bis Faktor 2

- Emulsion / Kapseln bis Faktor 22

- Matrix-Effekte bis Faktor 10

- Inter-individuell: bis Faktor 13

Verzehr ≠ Aufnahme

Bioverfügbarkeit individuell nicht vorhersagbar

Individuell dosieren!!!

Schuchardt PLEFA 2013;89:1; Köhler et al, Br J Nutr 2010, 104:729; Flock, JAHA 2013; 2:e000513 Davidson et al J Clin Lipidol. 2012;6:573-84; Hussey et al, Clin Pharm Drug Develop 2012;1:14; Neubronner et al, Eur J Clin Nutr 2011;65:247; Köhler et al, Nutrients 2017;9:629

Table 1 Recommended intakes of EPA + DHA by cohort and organization				
Cohort	Source	Daily recommendon		
General health				
Adults	spartment of Agriculture	≥25		
Adults	Europe. od Safety Agency	_50 mg		
Adults	World Health sization:	≥250 mg		
Adults	Academy of Nutrition Dietetics	≥500 mg		
Adults without CHD	American Heart Association	~500 mg (fatty fish ≥ 2 times/week)		
Adults	International Society for the Study tty A and Lipids	≥500 mg		
Pregnancy				
Pregnant/lactating	International Society for the Street Fatty Acids Lipids	≥500 mg (≥300 mg DHA)		
Pregnant/lactating	European Food Safety A	≥250 mg (100 to 200 mg DHA)		
Heart disease and inflammatory disorc	ders			
CHD	American Association	~1 g		
Patients with high TG	Am Heart Association	2 19		
Generally viewed as safe upper limit				
Population	US Food and Drug Administration	≤3 g EPA + DN		
Population	European Safety Authority	5 g EPA + DHA		
CHD, coronary heart disease; DHA, docos	ahexaenoic acid; EPA, eicosapentaenoic acid; TG, triglyceride.			

obere Hohlvene (Vena cava superior)

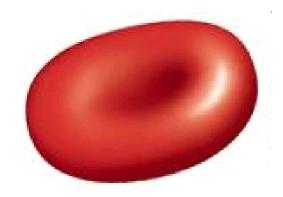
Hauptschlagader

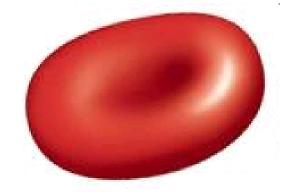
rechter Vorhof

rechte Koronararterie

rechte Kammer

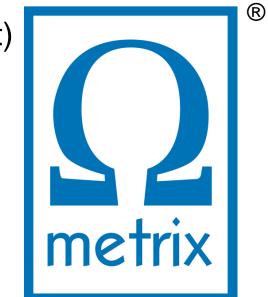
linker Vorhof


Hauptstamm der linken Koronararterie

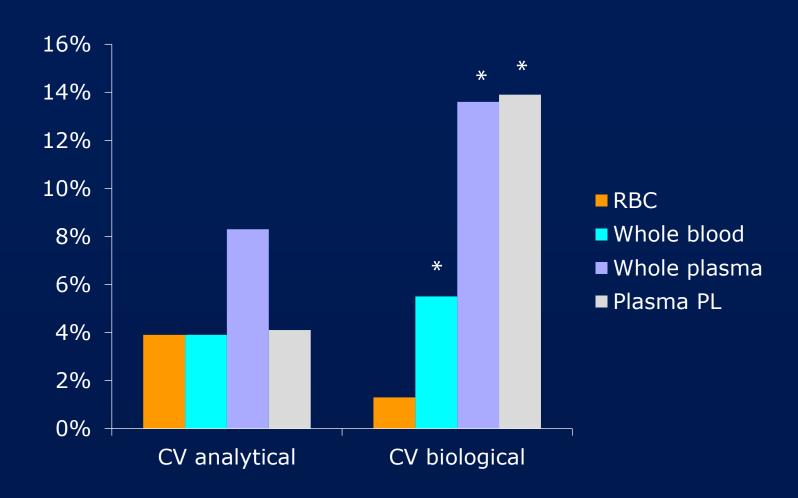

vorderer absteigender Ast (Ramus interventricularis anterior)

linke Kammer

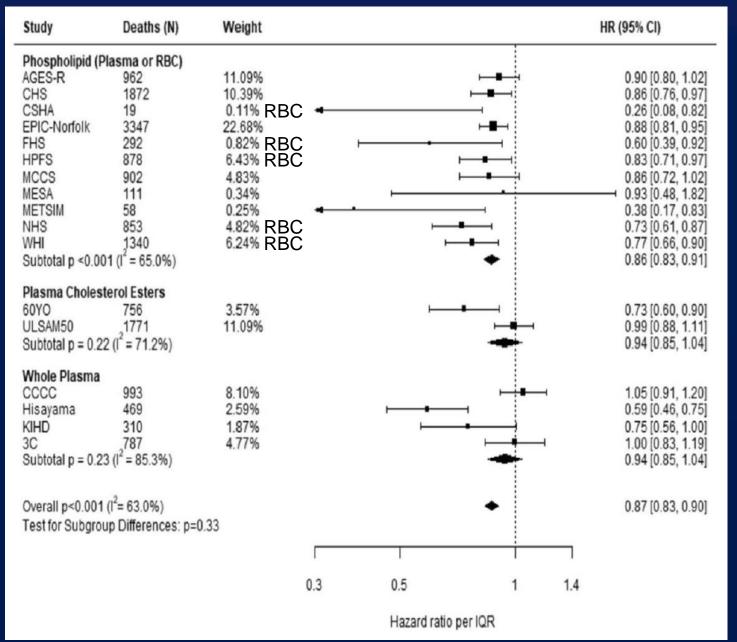
HS-Omega-3 Index®

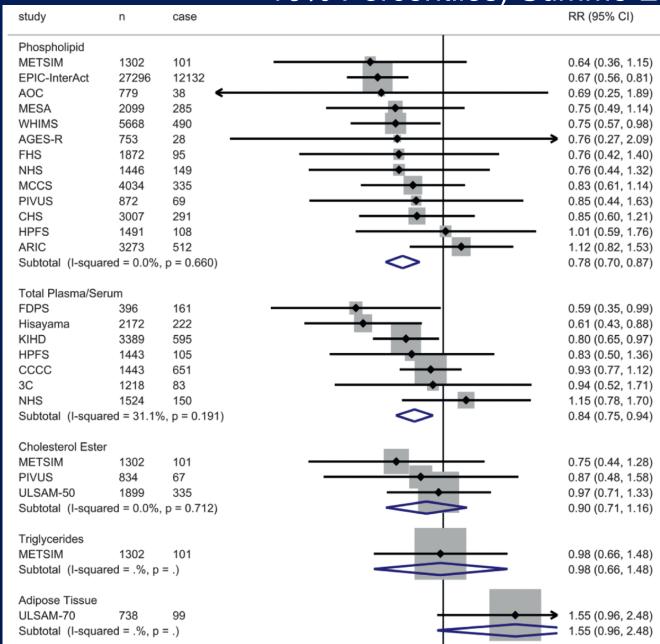


Erstpublikation 2004


Biomarker für Fettsäurezusammensetzung, korreliert mit Gewebe

In Erythrozyten gemessen (niedrige biologische Variabilität)
Standardisierte und validierte Methode für 26 Fettsäuren
(niedrige analytische Variabilität)


> 360 Publikationen, >50 laufende Forschungsprojekte QM nach DIN ISO 15189


Biologische Variabilität von Erythrozyten vs. andere und analytische Variabilität des HS-Omega-3 Index

Meta-Analyse: Gesamtmortalität und EPA&DHA im Blut per Interquartilabstand

Relatives Risiko für T2D gemäß Interquintilabstand (Unterschied zwischen 90% und 10% Percentiles) Summe EPA + DPA + DHA.

Absteigende Aussagekraft von EPA und DHA in

Erythrozyten: großer Abstand Signal – Rauschen

Vollblut

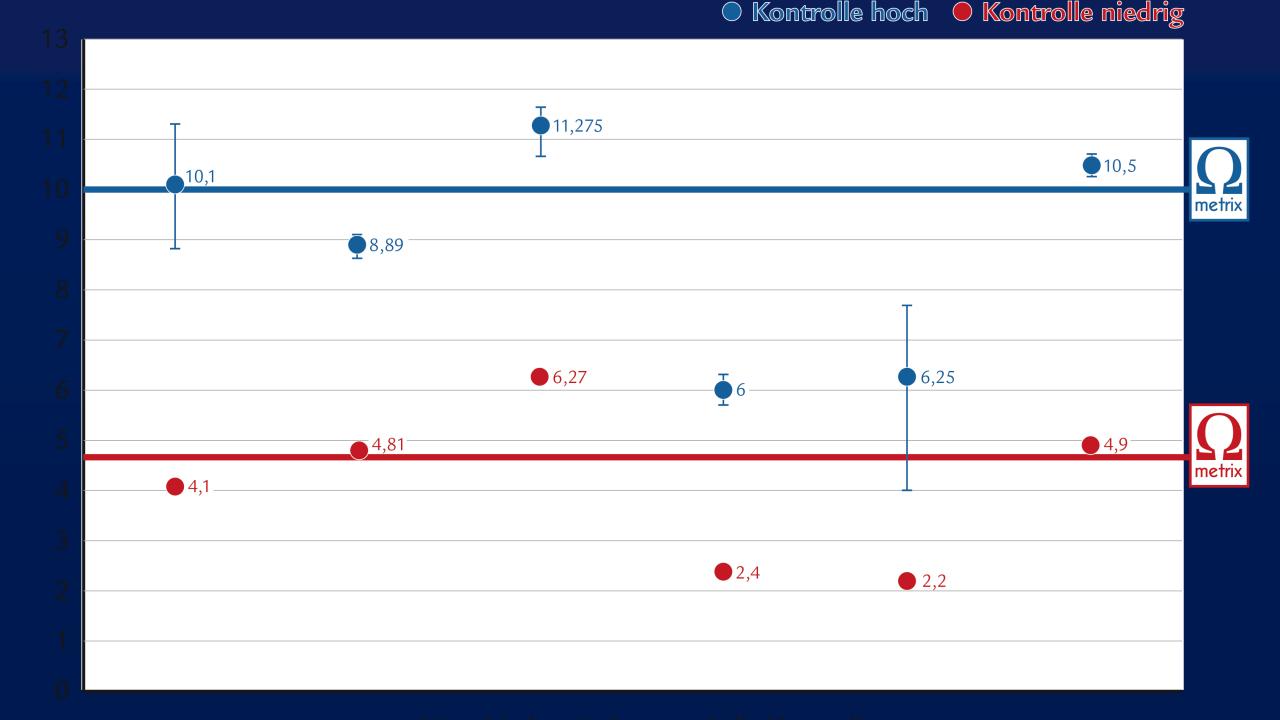
Plasma Phospholipide, größere biolog Variabilität

Gesamtplasma +/-

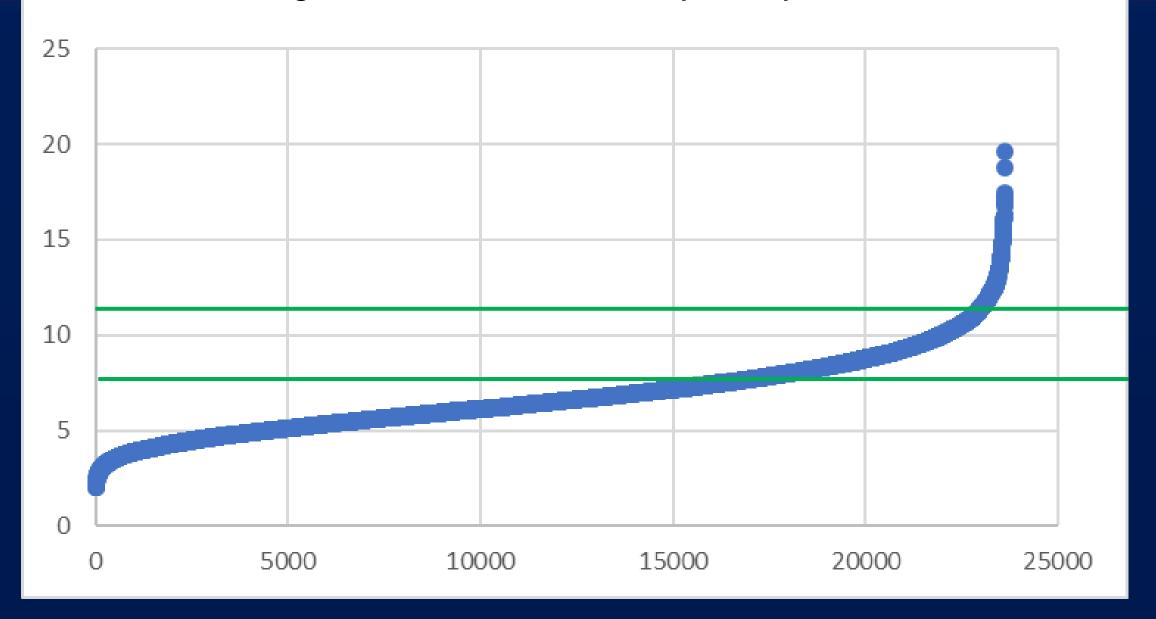
Gesamtserum +/-

Cholesterinester –

Triglyceride –


Fettgewebe -

HS-Omega-3 Index beim Menschen repräsentativ für Gewebe Herz, Brust, Muskel, Mundschleimhaut, Plazenta


Im Versuchstier repräsentativ für Gewebe Niere, Hirnrinde, Leber, Lunge, Darm, asf.

Schlechte Korrelation mit Zufuhr

Harris WS et al Circulation 2004;110:1645 Arnold et al, JBC, 2010; 285:32720-33; ; Gurzell et al, PLEFA 2014;91:87 Roy et al, Int J Canc 2015; e-pub July 2 u.a. Köhler et al, Br J Nutr 2010;104:729 Lager et al, J Clin Endo Metab 2017;102:4557

HS-Omega-3 Index in 23 615 Erythrozyten Proben

Jeder Mensch hat einen Omega-3 Index.

EPA und DHA sind lebenswichtig.

Zielbereich HS-Omega-3 Index: 8 – 11%

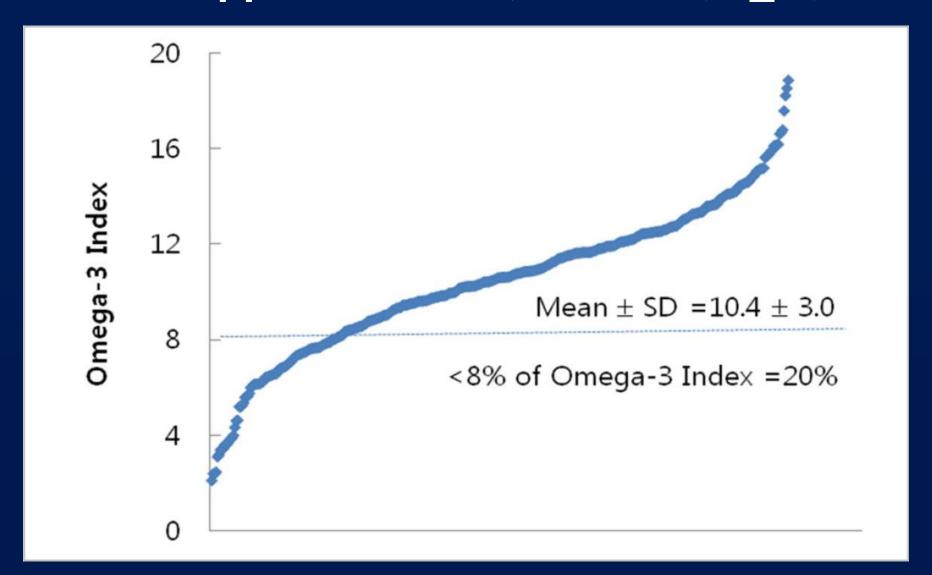
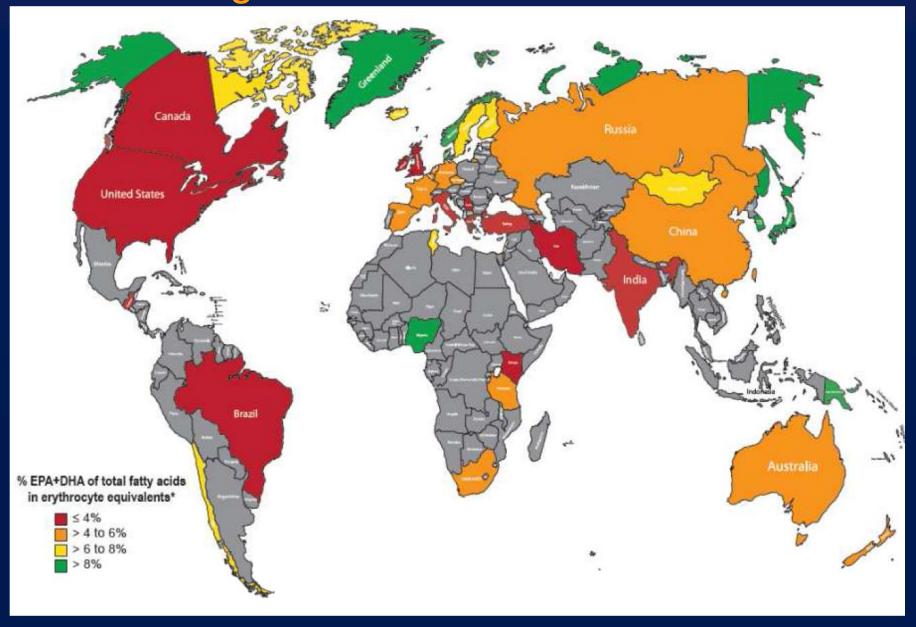

HS-Omega-3 Index in 166 Veganern

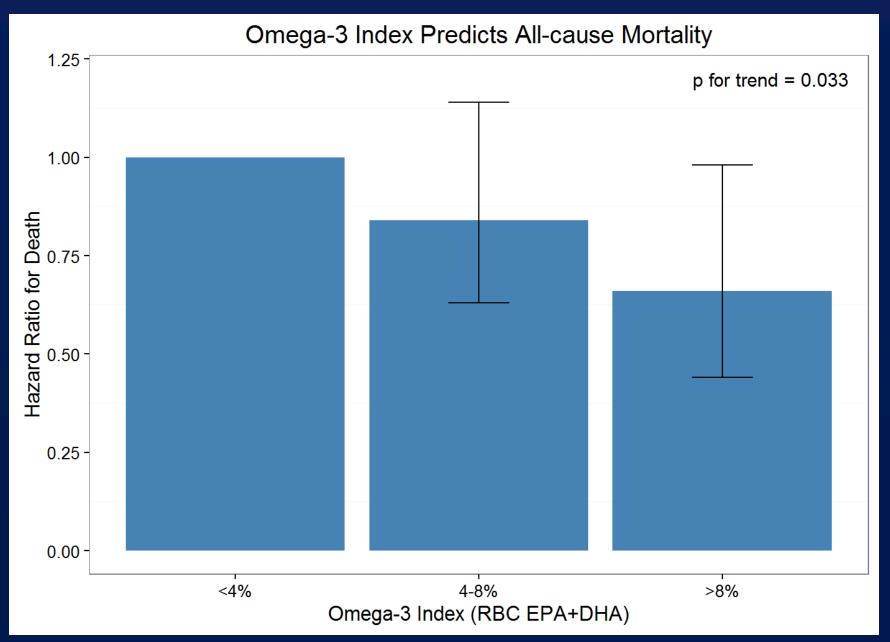
Table 2Baseline blood fatty acids^a and the Omega-3 Index in 166 vegan subjects.


Fatty acids	Mean	SD
14:0	0.69%	0.44%
16:0	22.41%	1.65%
18:0	14.38%	1.02%
18:1trans	0.42%	0.25%
18:1n9	17.51%	2.00%
18:2trans	0.53%	0.41%
18:2n6	19.19%	2.65%
18:3n3	0.55%	0.31%
20:3n6	2.15%	0.55%
20:4n6	11.68%	1.89%
20:5n3	0.63%	0.29%
22:4n6	2.16%	0.57%
22:5n3	2.00%	0.49%
22:6n3	2.44%	0.84%
Omega-3 Index ^b	3.73%	1.02%

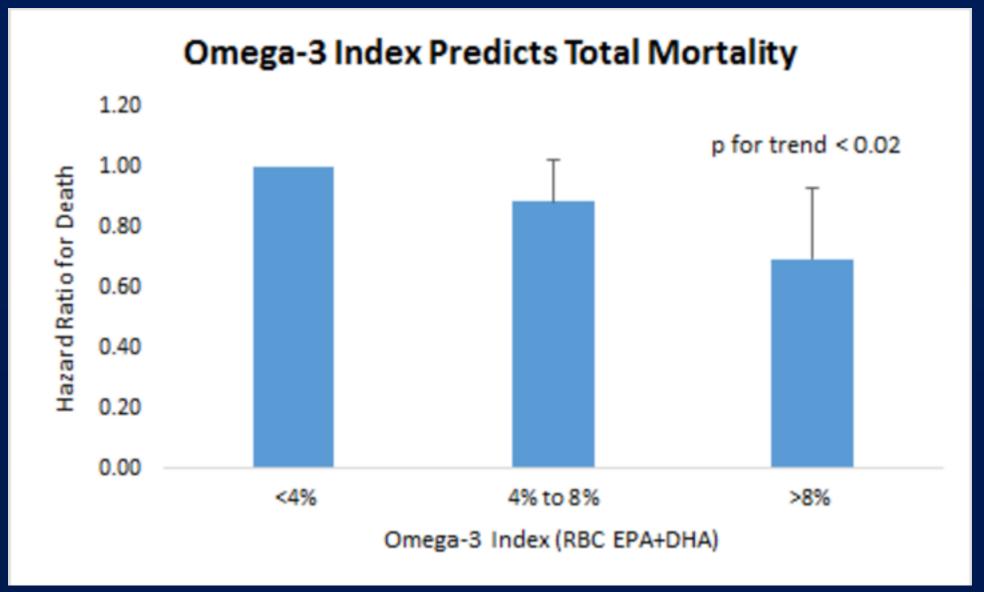
Deshalb empfiehlt ds deutsche
Bundeszentrum für Ernährung Veganer*innen/Vegetarier*innen
Supplementation mit EPA und DHA
z.B. aus Algen

HS-Omega-3 Index in 1000 Süd-Koreanern Keine Supplementation, Mittel 10,4 ± 3,0 %

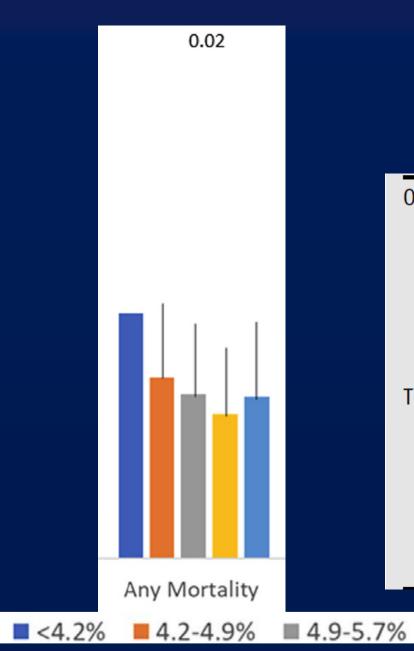
Omega-3 Index rund um die Welt


Zwischenzusammenfassung Einleitung

Zusammensetzung Zellmembran moduliert Zellfunktion
Konventionelle Ernährungsforschung unsichere Methoden, unsichere Ergebnisse
Trotzdem von vielen Fachgesellschaften Empfehlung zu EPA & DHA
Im Menschen wird ALA kaum zu EPA, EPA nicht zu DHA metabolisiert
Verzehr ≠ Aufnahme, zelluläre Spiegel entscheidend
Standardisierte Spiegelbestimmung: HS-Omega-3 Index
Bei uns niedrige Spiegel häufig, Spiegel über 11% selten

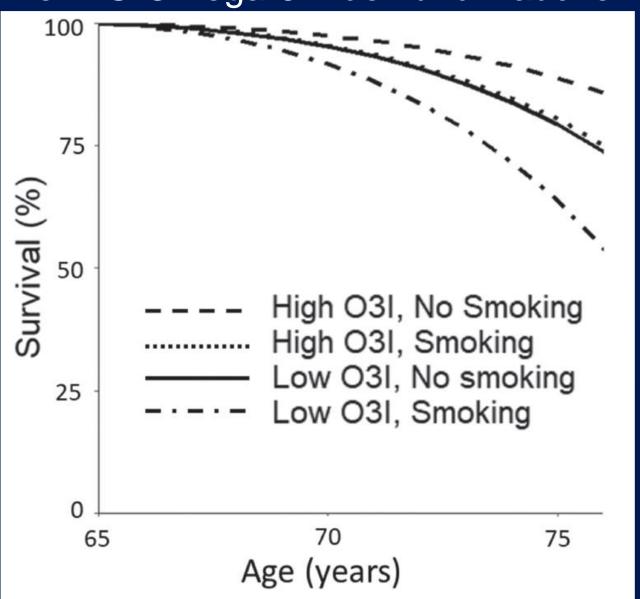

HS-Omega-3 Index: Epidemiologie:

Gesamtmortalität


Omega-3 Index und Risk Gesamtmortalität in LURIC

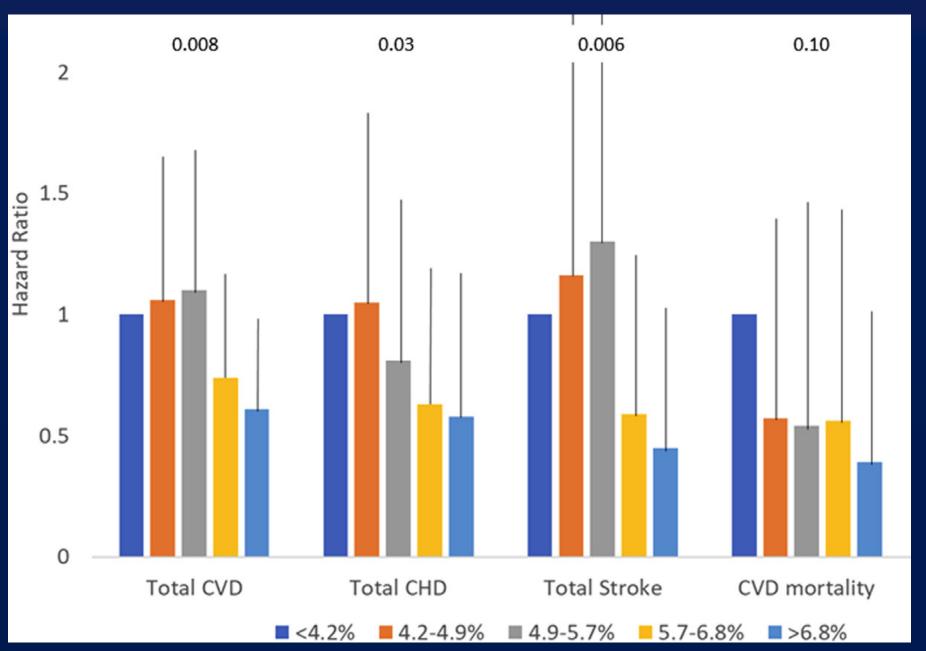
Women's Health Initiative Memory Study: 6501 Frauen, Alter 65-80 Jahre, 15 Jahre Follow-up, 1851 (28,5%) verstorben

HS-Omega-3 Index und Gesamtmortalität in Framingham



	Any Mortality
Omega-3 Index§	
<4.2% (n = 506)	1.0
4.2%-4.9% (n = 500)	0.74 (0.53, 1.03)
4.9%-5.7% (n = 500)	0.67 (0.47, 0.97)
5.7%-6.8% (n = 502)	$0.58 (0.41, 0.84)^{\dagger}$
>6.8% (n = 489)	0.65 (0.45, 0.94)
<i>P</i> -value from linear trend test ^{II}	.01*
Total cholesterol [§]	
<154 (n = 406)	1.0
154-175 (n = 491)	0.73 (0.50, 1.05)
176-194 (n = 520)	0.72 (0.49, 1.06)
195-218 (n = 551)	0.91 (0.64, 1.31)
>218 (n = 530)	0.96 (0.66, 1.40)
<i>P</i> -value from linear trend test ^{II}	.11

■>6.8%


5.7-6.8%

Framingham: Überlebenswahrscheinlichkeit über 65 Jahren, hier HS-Omega-3 Index und Rauchen

Herz-Kreislauf

HS-Omega-3 Index und Kardiovaskuläre Ereignisse in Framingham

Harris et al, J Clin Lipidol. 2018;12:718

Table 4 Omega-3 Index and total cholesterol: Associations with risk for disease outcomes (n = 2500)

	Hazard ratios (95% CIs)				
	Total CVD	Total CHD	Total Stroke	CVD mortality	Any Mortality
Omega-3 Index [§]					
<4.2% (n = 506)	1.0	1.0	1.0	1.0	1.0
4.2%-4.9% (n = 500)	1.08 (0.70, 1.65)	1.06 (0.61, 1.85)	1.20 (0.63, 2.27)	0.65 (0.27, 1.54)	0.74 (0.53, 1.03)
4.9%-5.7% (n = 500)	1.11 (0.73, 1.68)	0.81 (0.44, 1.47)	1.32 (0.69, 2.50)	0.53 (0.19, 1.49)	0.67 (0.47, 0.97)
5.7%-6.8% (n = 502)	0.74 (0.47, 1.17)	0.63 (0.34, 1.19)	0.61 (0.29, 1.27)	0.58 (0.22, 1.55)	$0.58 (0.41, 0.84)^{\dagger}$
>6.8% (n = 489)	0.63 (0.39, 1.01)	0.59 (0.30, 1.17)	0.47 (0.21, 1.06)	0.44 (0.16, 1.91)	0.65 (0.45, 0.94)
<i>P</i> -value from linear trend test ^{II}	.009 [†]	.03*	.006 [†]	.19	.01*
Total cholesterol [§]					
<154 (n = 406)	1.0	1.00	1.0	1.0	1.0
154-175 (n = 491)	1.03 (0.69, 1.56)	1.02 (0.55, 1.89)	0.88 (0.47, 1.66)	1.22 (0.53, 2.77)	0.73 (0.50, 1.05)
176-194 (n = 520)	0.95 (0.62, 1.45)	1.29 (0.71, 2.37)	0.63 (0.31, 1.27)	0.67 (0.26, 1.77)	0.72 (0.49, 1.06)
195-218 (n = 551)	0.89 (0.56, 1.39)	1.01 (0.53, 1.92)	0.69 (0.32, 1.40)	1.07 (0.30, 3.79)	0.91 (0.64, 1.31)
>218 (n = 530)	1.09 (0.66, 1.80)	1.59 (0.81, 3.11)	0.89 (0.41, 1.93)	0.31 (0.72, 1.34)	0.96 (0.66, 1.40)
<i>P</i> -value from linear trend test ^{II}	.99	.26	.50	.27	.11

CVD, cardiovascular disease; CHD, coronary heart disease; CI, confidence interval.

^{*}P < .05; †P < .01; ‡P < .001.

[§]Hazard ratios presented here were adjusted for all variables in Table 1 with the addition of grouped total cholesterol (and removing total cholesterol to high-density lipoprotein cholesterol ratio) and the grouped Omega-3 Index.

[&]quot;Linear trend test models were fit for both the Omega-3 Index and TC simultaneously, after adjusting for variables as described in footnote "§".

Klinische Ereignisse korrelieren mit dem HS-Omega-3 Index

- stimmt auch für Interventionsstudien.

Den HS-Omega-3 Index erhöhen –

Effekte auf Surrogatparameter

lacksquare	(Harris et al Am J Cardiol 2006; 98:1393-5)
	(Carney et al Psychosom Med 2010;72:748)
lacksquare	(Dewell et al J Nutr Res 2011;141:2166;
	Skulas-Ray et al Ann Behav Med 2012;44:301
lacksquare	(Larsson et al, Thromb Haemost 2008;100: 634
	Harris et al, Lipids 2008;43:805)
lacksquare	(Duda et al Cardiovasc Res 2009;81:319
	Dewell et al J Nutrition 2011;141:2166
	Blocket al World J Cardiovasc Dis2012;2:14
lacksquare	(Skulas-Ray Am J Clin Nutr 2011;93:243,
	Schuchardt et al PLEFA 2011;85:381
	Shearer et al J Lipid Res. 2012;53:2429)
V	(Maki et al J Clin Lipidol 2011;5:483)
	(Maki et al J Clin Lipidol 2011;5:483)
	 ▼ ▼ ▼ ▼ ▲

Meta-Analyse Interventionsstudien mit CV Risikofaktoren

Table 2 Pooled effects of eicosapentaenoic acid and/or docosahexaenoic acid supplementation on risk factors associated with cardiovascular disease

	Number of			Test of heterogeneity [†]		
Outcome	studies	Effect size (95% CI)	<i>P</i> -value*	Q-value	<i>P</i> -value	P
Total cholesterol (mmol L ⁻¹)	108	-0.051 (-0.166, 0.064)	0.387	1440.211	0.0001	92.57
LDL-cholesterol (mmol L ⁻¹)	100	0.150 (0.058, 0.243)	0.001	1270.903	0.0001	92.21
HDL-cholesterol (mmol L ⁻¹)	110	0.039 (0.024, 0.054)	0.0001	204.740	0.0001	46.76
Trialycerides (mmol I ⁻¹)	110	_0 368 (<u>_0 427</u> _0 309)	0.0001	508 295	0.0001	80 34
Systolic blood pressure (mmHg)	50	-2.195 (-3.172, -1.217)	0.0001	109.009	0.0001	56.88
Diastolic blood pressure (mmHg)	50	-1.08 (-1.716, -0.444)	0.0001	123.045	0.0001	61.80
Heart rate (bpm)	26	-1.37 (-2.415, -0.325)	0.01	68.661	0.0001	63.58
C-reactive protein (mg L ⁻¹)	20	-0.343 (-0.454, -0.232)	0.0001	926.382	0.0001	97.95
Tumor necrosis factor α (pg mL ⁻¹)	11	-0.277 (-0.661, 0.108)	0.159	21.771	0.016	54.07
Fibrinogen (g L ⁻¹)	14	-0.032 (-0.146, 0.082)	0.584	21.229	0.069	38.76
Platelet count (× 10³)	9	-1.110 (-11.367, 9.146)	0.832	13.865	0.085	42.30
Soluble intercellular adhesion molecule-1 (ng mL ⁻¹)	9	-0.054 (-0.219, 0.108)	0.515	20.084	0.010	60.16
Soluble vascular cell adhesion molecule-1 (ng mL ⁻¹)	9	-8.112 (-23.507, 7.283)	0.302	10.449	0.235	23.44
Flow-mediated dilation (%)	6	1.460 (-0.475, 3.395)	0.139	28.657	0.0001	82.55

^{*}For meta-analysis: P < 0.05 was considered statistically significant.

[†]For heterogeneity assessment: P < 0.1 for Q test or $I^2 > 50\%$ was considered to indicate significant heterogeneity across the studies. CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Den HS-Omega-3 Index erhöhen –

Effekte auf Intermediärparameter

Koronarläsionen

(von Schacky, Ann Int Med 1999;130:554)

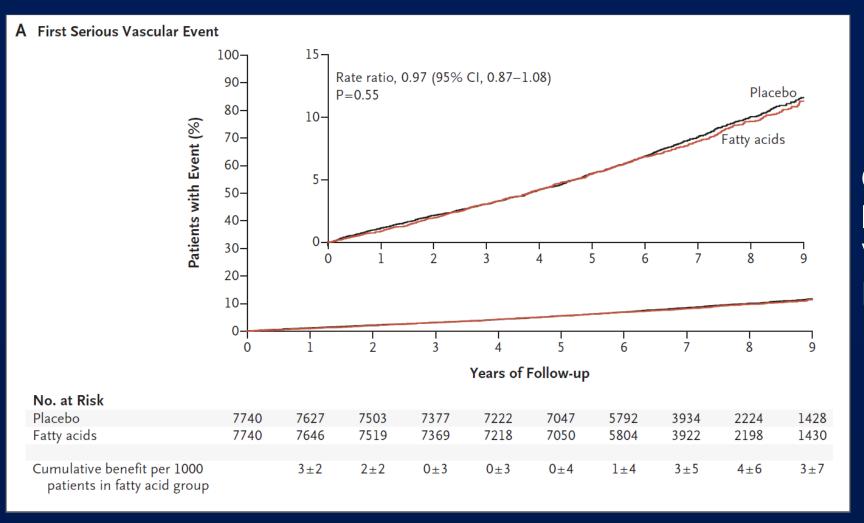
LV-Remodeling

(Heydari et al Circulation 2016;134:378)

Meta-Analyse Vergleich Statin <u>+</u> Omega-3 Effekt auf Koronarläsionen

	Exp	Experimental Control Std. Mean Difference				Std. Mean Difference			
Study or Subgroup	Mean	SD		Mean		Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.9.1 EPA									
Budoff 2020	-0.5	0.8	31	0.4	1.2	37	14.2%	-0.86 [-1.36, -0.36]	
Niki 2015	-0.5	3.7	29	-0.6	2.8	30	13.9%	0.03 [-0.48, 0.54]	
Watanable 2017	-8.76	10.61	97	-1.62	9.32	96	20.3%	-0.71 [-1.00, -0.42]	
Subtotal (95% CI)			157			163	48.3%	-0.53 [-1.01, -0.06]	
Heterogeneity: Tau ² = 0.13; Chi ² = 7.44, df = 2 (P = 0.02); I ² = 73%									
Test for overall effect: Z = 2.19 (P = 0.03)									
1.9.2 EPA+DHA									
Ahn 2015	-12.65	30.19	36	-8.51	55.5	38	15.3%	-0.09 [-0.55, 0.37]	
Alfaddagh (high-intensity statin) 2017	9.11	20.15	65	12.04	23.11	61	18.5%	-0.13 [-0.48, 0.22]	
Alfaddagh (low-intensity statin) 2017	3.33	20.83	61	10.45	20.75	53	17.8%	-0.34 [-0.71, 0.03]	-
Subtotal (95% CI)			162			152	51.7%	-0.20 [-0.42, 0.02]	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.90, df = 2 (P = 0.64); I ² = 0%									
Test for overall effect: $Z = 1.75$ (P = 0.08)	U.								
T. A. 1/05% ON			040			045	400.00		
Total (95% CI)			319			315	100.0%	-0.36 [-0.64, -0.08]	
Heterogeneity: Tau² = 0.08; Chi² = 14.43, df = 5 (P = 0.01); i² = 65%									
Lest for overall effect $7 = 7.66 (P = 11.11)$								Favours [Omega-3+Statin] Favours [Statin]	
Test for subgroup differences: Chi ² = 1.55. df = 1 (P = 0.21). I ² = 35.6%									

REMODEL – Entwicklung LV nach Infarkt Endpunkte korrelieren mit HS-Omega-3 Index


Table 5. Mean Percent Change in Primary and Secondary Endpoints per 1 SD Change in RBC Omega-3 Fatty Acids After 6 Months of Treatment

	LVESVI* n=227	Noninfarct Myocardial Fibrosis n=157	Infarct Size* n=232	LVEF n=227
Δ Omega-3 index (% RBC FA) (per 1 SD=2.6%)	-4.6% (-6.9%, -2.2%)	-1.0% (-1.9%, -0.1%)	2.5% (-5.7%, 11.3%)	1.1% (0.3%, 1.9%)
	<i>P</i> =0.0002†	<i>P</i> =0.039†	<i>P</i> =0.56	<i>P</i> =0.0087†
△ DHA (% RBC FA)	-5.2% (-7.5%, -2.8%)	-1.1% (-2.1%, -0.2%)	1.0% (–7.0%, 9.7%)	1.2% (0.4%, 2.0%)
(per 1 SD=1.6%)	<i>P</i> <0.0001†	<i>P</i> =0.013†	<i>P</i> =0.81	P=0.0031†
Δ EPA (% RBC FA)	-3.1% (-5.5%, -0.6%)	-0.5% (-1.5%, 0.4%)	4.4% (-3.9%, 13.4%)	0.7% (-0.1%, 1.5%)
(per 1 SD=1.1%)	<i>P</i> =0.015†	<i>P</i> =0.25	<i>P</i> =0.31	<i>P</i> =0.078

Interventionsstudien mit Klinischen Endpunkten

Warum so viele neutrale Studien?

RCT ASCEND: 15 480 Patienten mit Diabetes, keine Atherosklerose 1 g Omega-3 vs Placebo (Olivenöl), 7.4 Jahre Follow-Up Primärer Endpunkt: nicht-tödlicher Herzinfarkt oder Schlaganfall, TIA, vaskulärer Tod

Omega-3 Index gemessen bei 152 Teilnehmern Verum: von 7.1 auf 9.1% Placebo: von 6.6 auf 6.5%

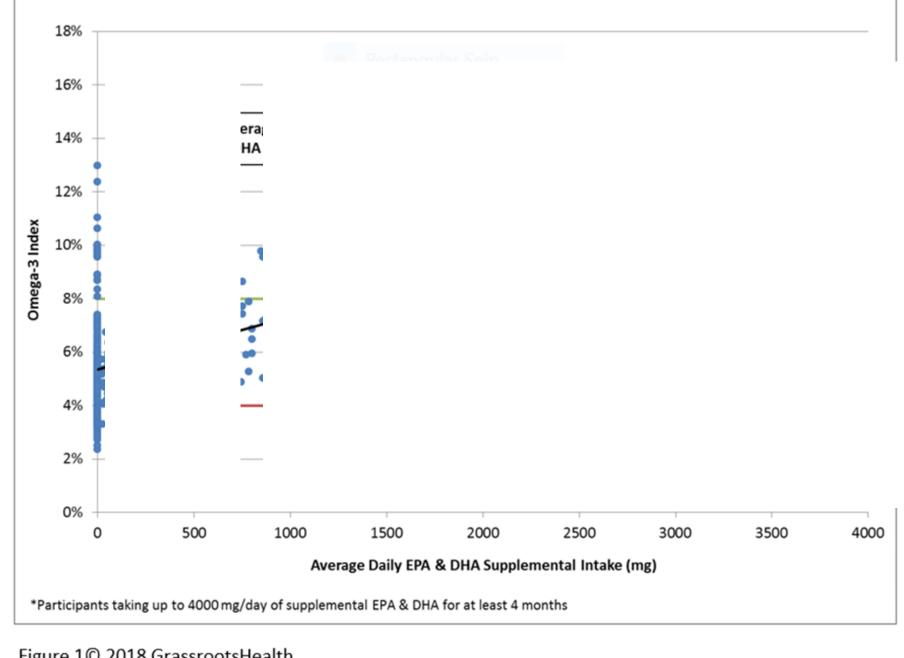


Figure 1© 2018 GrassrootsHealth

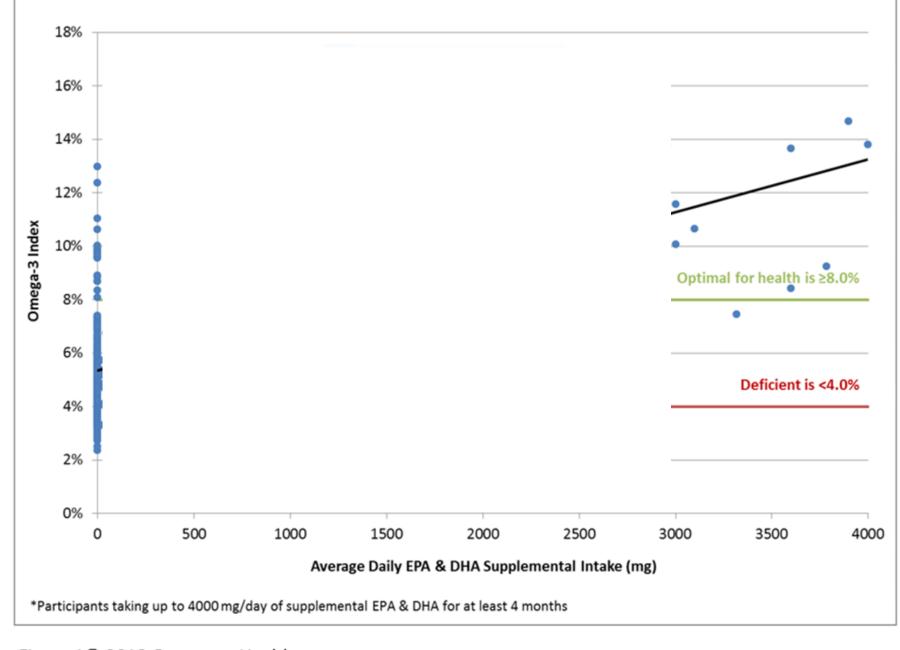


Figure 1© 2018 GrassrootsHealth

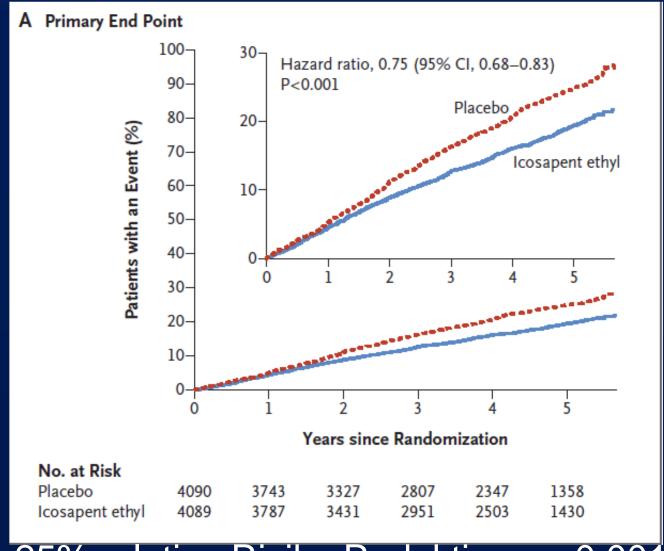
REDUCE-IT

RCT mit 8179 Teilnehmern mit CV Risiko, alle mit Statin

4 g EPA-Ethylester vs. Placebo

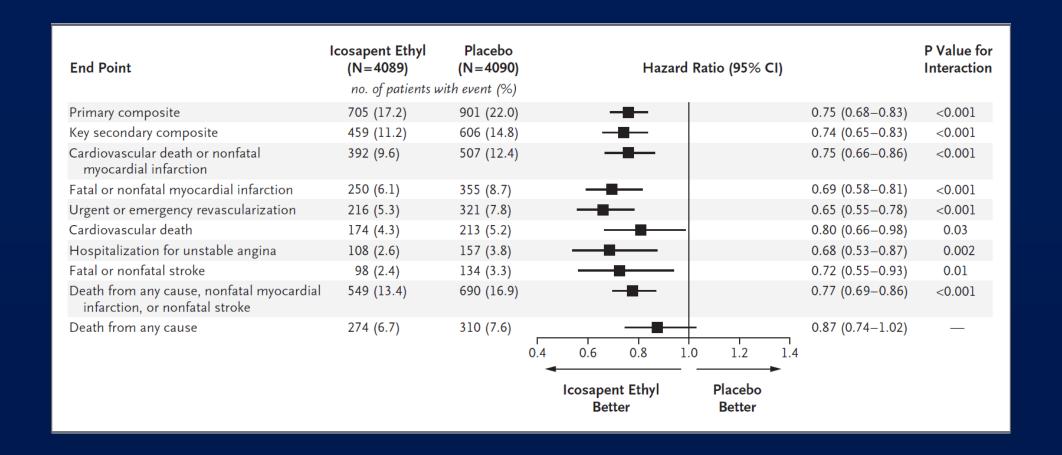
4.9 Jahre mittlere Studiendauer

Primärer Endpunkt: MACE

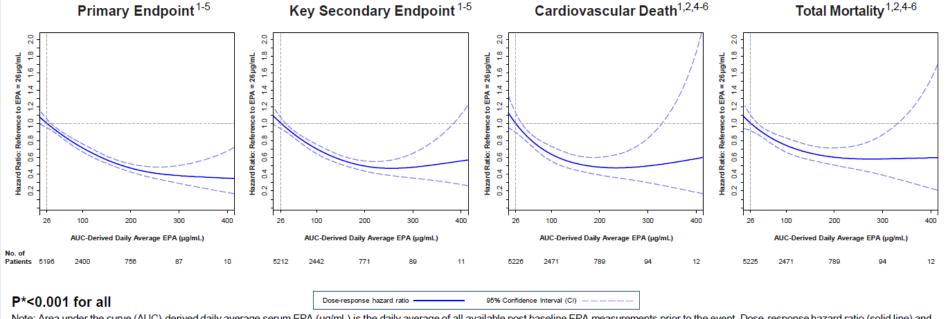

CV Tod, nicht-tödlicher Herzinfarkt,

nicht-tödlicher Schlaganfall

koronare Revask., instable AP mit Hospitalisierung

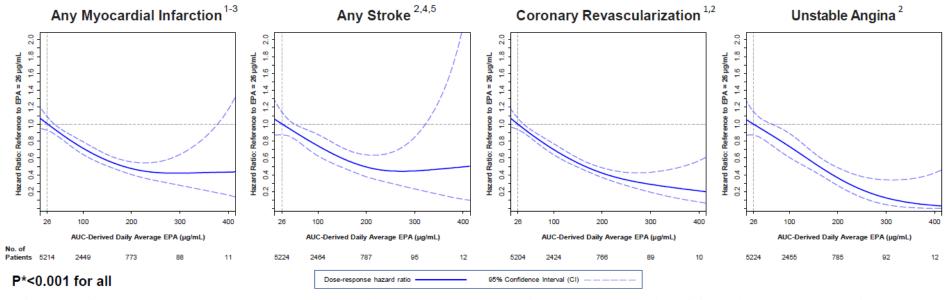

Serumspiegel stiegen sechsfach!

REDUCE-IT


25% relative Risiko Reduktion, p<0.001

REDUCE-IT

Primary and Key Secondary Composite Endpoints, Cardiovascular Death, and Total Mortality by On-Treatment Serum EPA

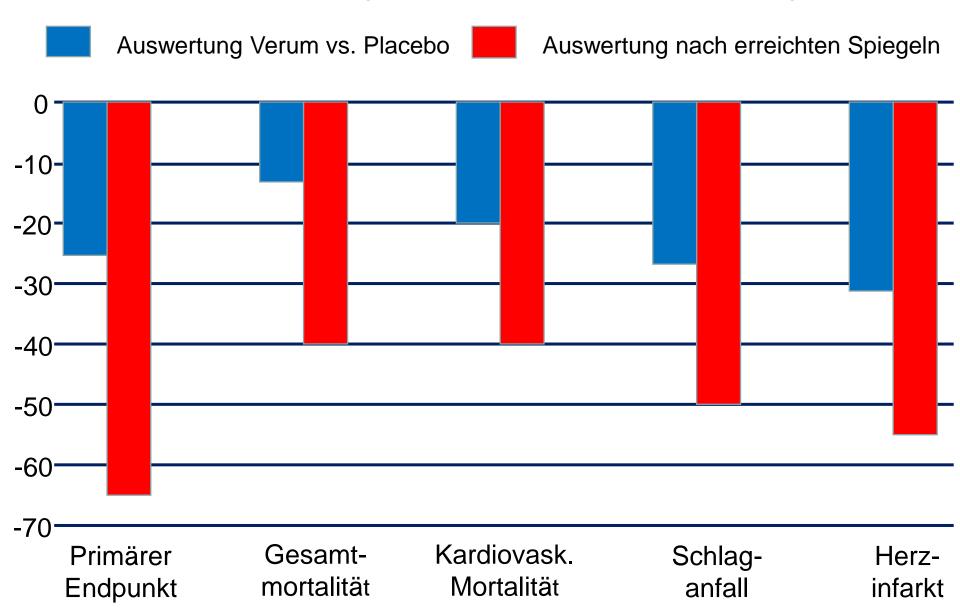


Note: Area under the curve (AUC)-derived daily average serum EPA (µg/mL) is the daily average of all available post baseline EPA measurements prior to the event. Dose-response hazard ratio (solid line) and 95% CI (dotted lines) are estimated from the Cox proportional hazard model with a spline term for EPA and adjustment for randomization factors and statin compliance¹, age², sex³, baseline diabetes⁴, hsCRP⁵, treatment compliance⁶.

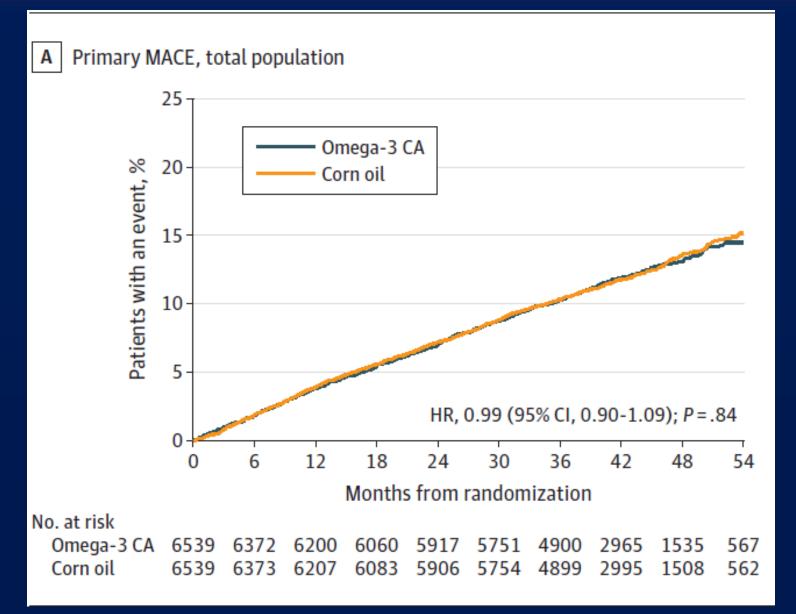
*P value is <0.001 for both non-linear trend and for regression slope.

Bhatt DL. ACC/WCC 2020, Chicago (virtual).

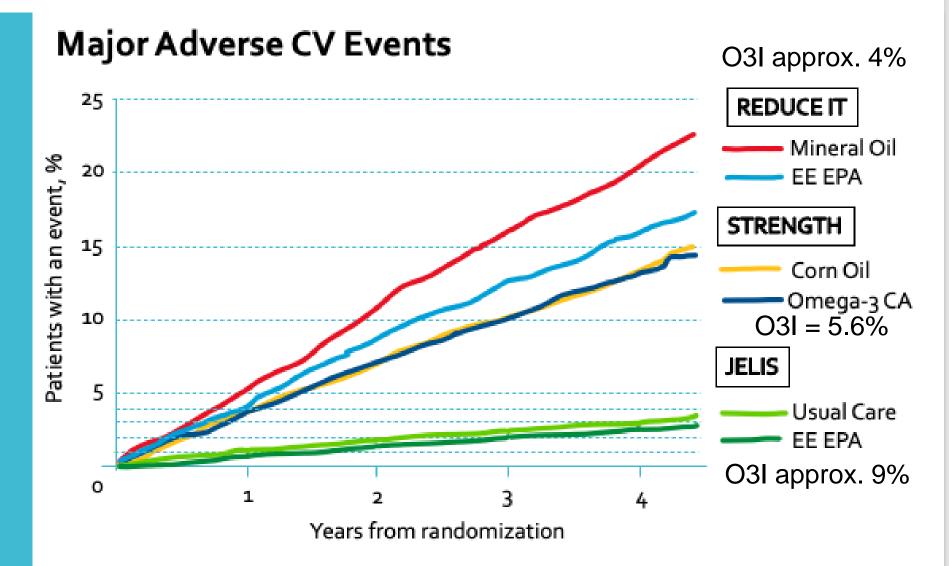
Dose-Response of Hazard Ratio (95% CI) College It Any Myocardial Infarction, Any Stroke, Coronary Revascularization, Unstable Angina by On-Treatment Serum EPA



Note: Area under the curve (AUC) -derived daily average serum EPA (µg/mL) is the daily average of all available post baseline EPA measurements prior to the event. Dose-response hazard ratio (solid line) and 95% CI (dotted lines) are estimated from the Cox proportional hazard model with a spline term for EPA and adjustment for randomization factors and sex¹, baseline diabetes², hsCRP³, statin compliance⁴, age⁵.


*P value is <0.001 for both non-linear trend and for regression slope.

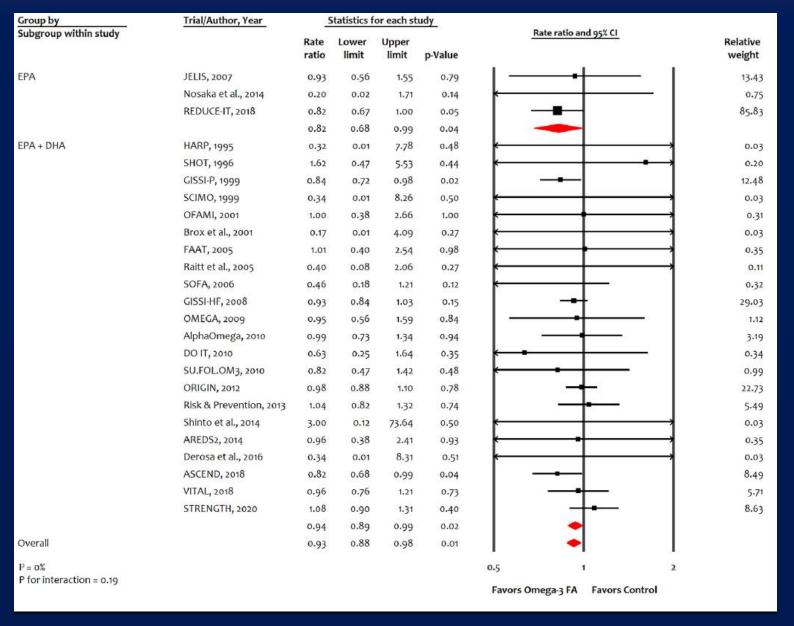
Bhatt DL. ACC/WCC 2020, Chicago (virtual).


REDUCE-IT: Spiegel entscheiden über Ereignisse

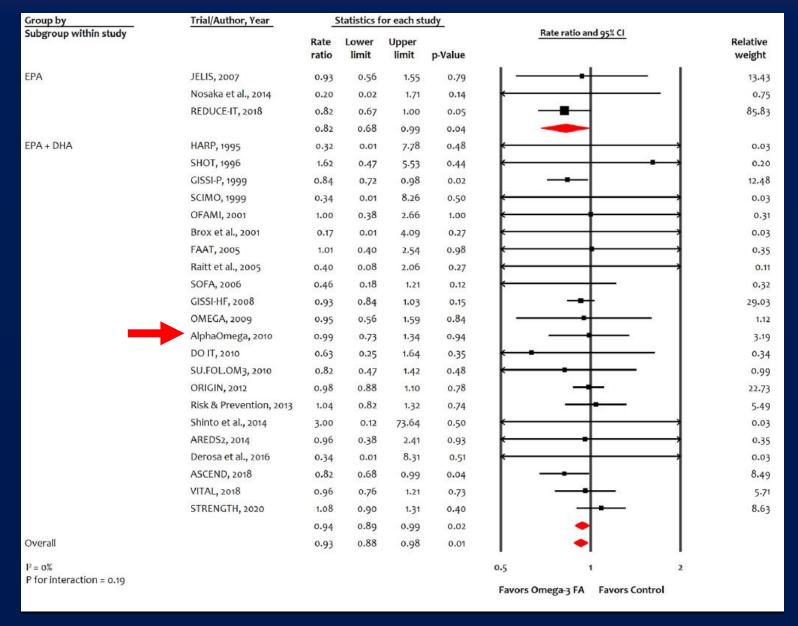
Strength Primärer Endpunkt

STRENGTH vs REDUCE IT vs JELIS: MACE Event Rates to Year 4

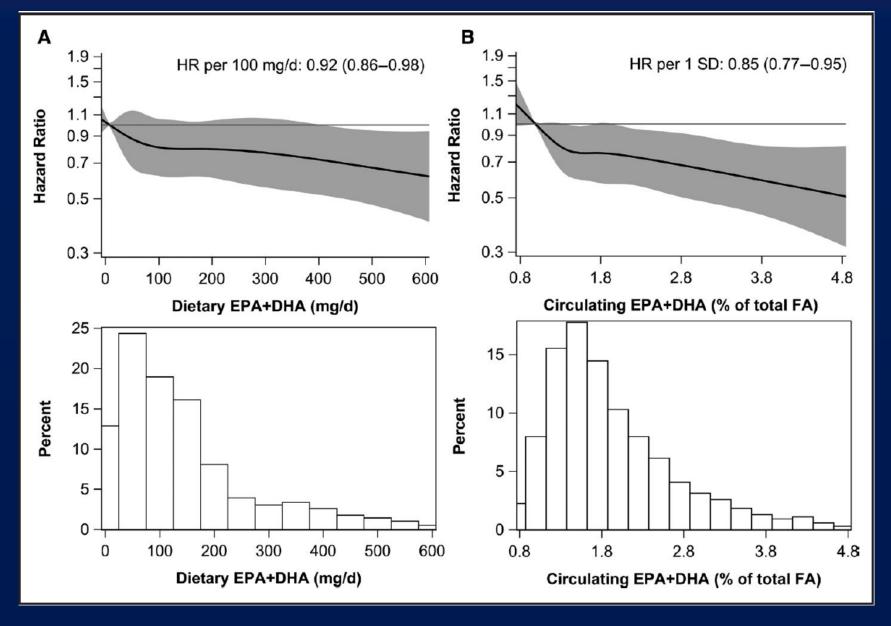
Ignorieren der Ausgangsspiegel und der komplexen


Bioverfügbarkeit Gründe für neutrale Ergebnisse vieler RCT's

Damit ein RCT positiv ist, muss eine Population mit einem


Defizit bei Studienbeginn rekrutiert werden,

Spiegel in Verum und Placebo müssen sich unterscheiden.


Meta-Analyse CV Mortalität 2021

Meta-Analyse CV Mortalität 2021

Alpha-Omega, ausgewertet nach baseline-Daten

Summary of findings for the main comparison. High versus low long-chain omega-3 fats for preventing cardiovascular disease and mortality (primary outcomes)

High versus low long-chain omega-3 fats for preventing cardiovascular disease and mortality (primary outcomes)

Patient or population: adults with or without existing CVD

Setting: participants were living at home for most or all of the duration of their trials. Most trials were carried out in high-income economies (World Bank 2018), but four were carried out in upper-middle-income countries (Argentina, Iran, Turkey and China). No trials took place wholly in low- or low-middle income countries.

Intervention: higher intake of LCn3 fats Comparison: lower intake of LCn3 fats

The intervention was dietary supplementation, a provided diet or advice on diet. Supplementation may have been in oil or capsule form or as foodstuffs provided, to be consumed by mouth (excluding enteral and parenteral feeds and enemas). The foodstuffs or supplements must have been oily fish or fish oils as a food, oil, made into a spreading fat, or supplementing another food (such as bread or eggs). Refined eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or concentrated fish or algal oils, were also accepted.

<u> </u>							
Outcomes	Anticipated at (95% CI)	osolute effects*	Relative ef- fect (95% CI)	№ of partici- pants (trials)	Certainty of the evidence (GRADE)	Comments	
	Risk with lower LCn3	Risk with higher LCn3	(55 % Ci)	(criato)	(GIANDE)		
All-cause mortality – deaths Assessed with number of participants dying of any cause, whether reported as an outcome or a reason for dropout Duration: range 12-88 months	80 per 1000	78 per 1000 (74 to 81)	RR 0.97 (0.93 to 1.01)	143,693 (45 RCTs)	⊕⊕⊕⊕ High ^a	LCn3 fat intake makes little or no difference to risk of all-cause mortality	
Cardiovascular mortality – cardiovascular deaths Assessed with deaths from any cardiovascular cause. Where this was not available, we used cardiac death instead where known Duration: range 12-88 months	50 per 1000	46 per 1000 (43 to 49)	RR 0.92 (0.86 to 0.99)	117,837 (29 RCTs)	⊕⊕⊕⊚ Moderate ^b	LCn3 fat intake probably makes little or no difference to risk of cardiovascular death	
Cardiovascular events Assessed with number of participants experiencing any cardiovascular event	128 per 1000	123 per 1000 (118 to 129)	RR 0.96 (0.92 to 1.01)	140,482 (43 RCTs)	⊕⊕⊕⊕ High ^c	LCn3 fat intake makes little or no difference to risk of cardiovascular events	

Cochrane Meta-Analyse 2020

Coronary heart disease mortality - CHD deaths Assessed with coronary deaths, or where these were not reported, IHD death, fatal MI or cardiac death (in that order) Duration: range 12-88 months	29 per 1000	26 per 1000 (24 to 29)	RR 0.90 (0.81 to 1.00)	127,378 (24 RCTs)	⊕⊕⊝⊝ Low ^d	Increasing LCn3 fat intake may slightly reduce CHD mortality (NNTB 334, 95% CI 200 to infinity; NNTB 1000 for primary prevention; NNTB 200 for secondary prevention)
Coronary heart disease events – CHD events Assessed with number of partic- ipants experiencing the first out- come in this list reported for each trial: CHD or coronary events; total MI; acute coronary syndrome; or angina (stable and unstable) Duration: range 12-88 months	68 per 1000	62 per 1000 (58 to 66)	RR 0.91 (0.85 to 0.97)	134,116 (32 RCTs)	⊕⊕⊝⊝ Low ^e	Increasing LCn3 fat intake may slightly reduce the risk of CHD events (NNTB 167, 95% CI 100 to 500; NNTB 200 for primary prevention; NNTB 143 for secondary prevention)
Assessed with number of participants experiencing at least 1 fatal or non-fatal, ischaemic or haemorrhagic stroke Duration: range 12-88 months	20 per 1000	21 per 1000 (19 to 23)	RR 1.02 (0.94 to 1.12)	138,888 (31 RCTs)	⊕⊕⊕⊝ Moderate ^f	LCn3 fat intake probably makes little or no difference to risk of experiencing a stroke

Zwischenzusammenfassung Herz-Kreislauferkrankungen

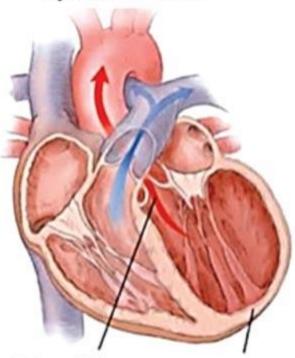
Häufigste Todesursache

Epidemiologie: Inverse Korrelationen klinische Ereignisse und HS-Omega Index Interventionsstudien zu Surrogatendpunkten: Korrelationen mit HS-Omega-3 Index Interventionsstudien zu Intermediärendpunkten: Korrelationen mit HS-Omega-3 Index Interventionsstudien zu klinischen Endpunkten: nicht alle positiv (Methodik!)

Letzte Cochrane Meta-Analyse: positiv für CV & KHE Mortalität & Ereignisse

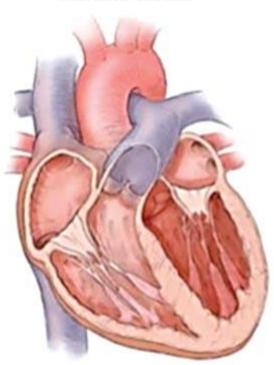
Niedriger HS-Omega-3 Index ein Risikofaktor für

Gesamtmortalität

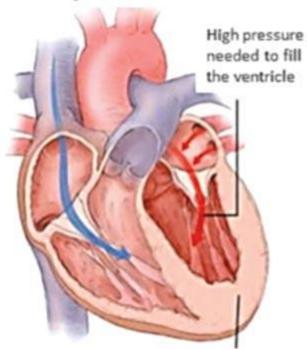

Myokardinfarkt

Schlaganfall

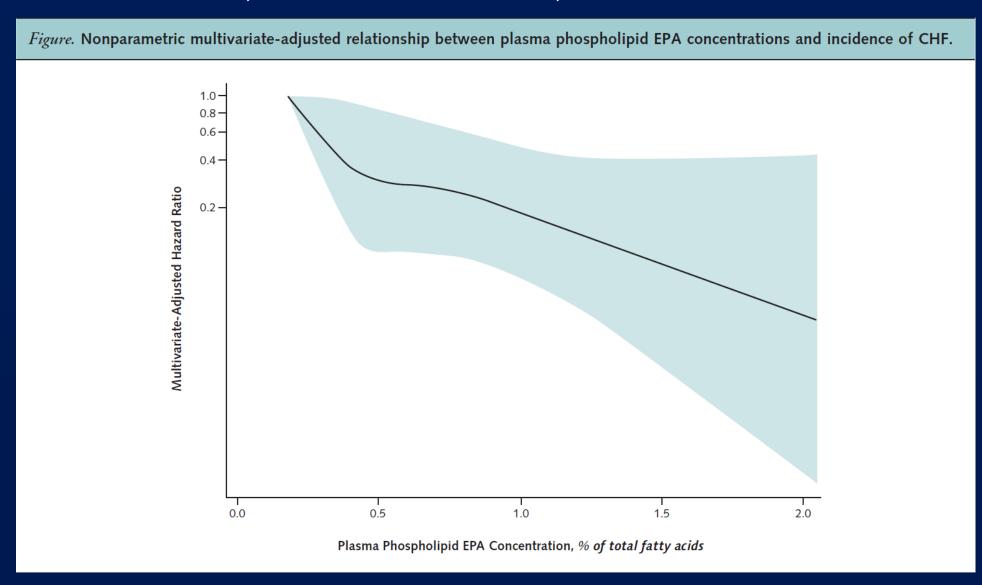
weitere kardiovaskuläre Ereignisse

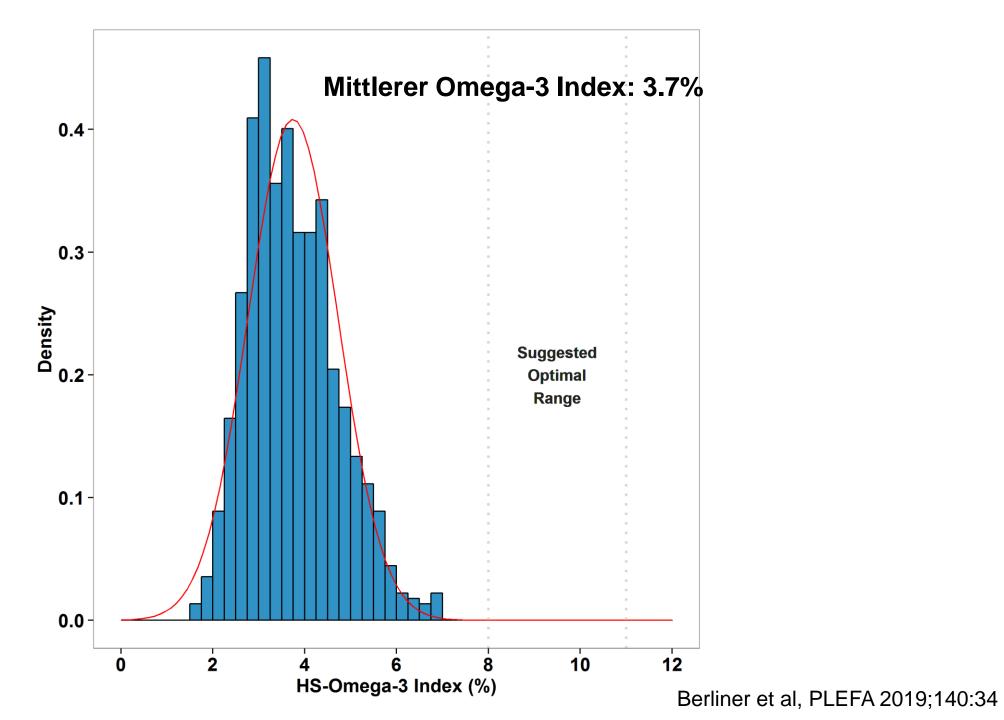

Herzinsuffizienz

Heart Failure Reduced Ejection Fraction


- Enlarged left ventricle
- Reduced pumping ability

Normal Heart

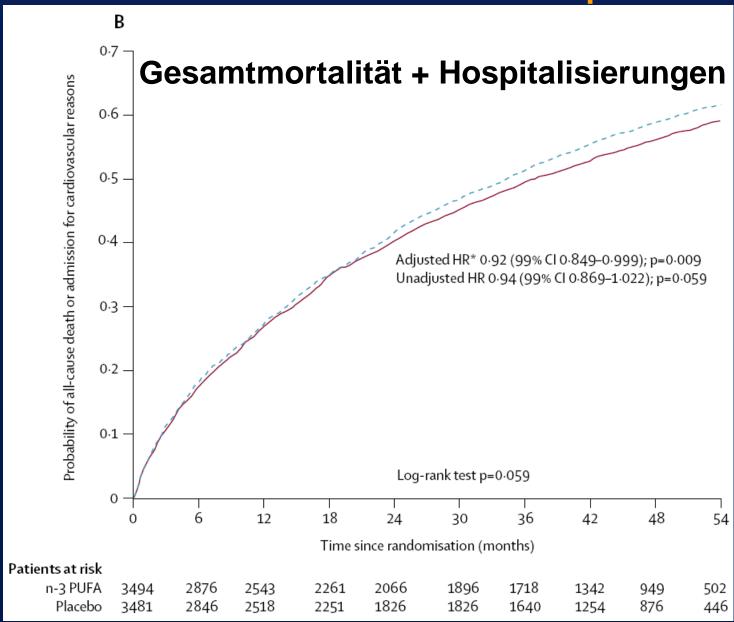

- Thinned walls
- Weakened muscle


Heart Failure Preserved Ejection Fraction

- Normal or small left ventricle size
- Thickened walls
- Stiff muscle
- Normal pumping capacity

Cardiovasc Health Study: Spätere Entwicklung von Herzinsuffizienz 2763 CV Gesunde, 10 Jahre beobachtet, 555 Fälle von Herzinsuffzizienz

GISSI-HF: HS-Omega-3 Index

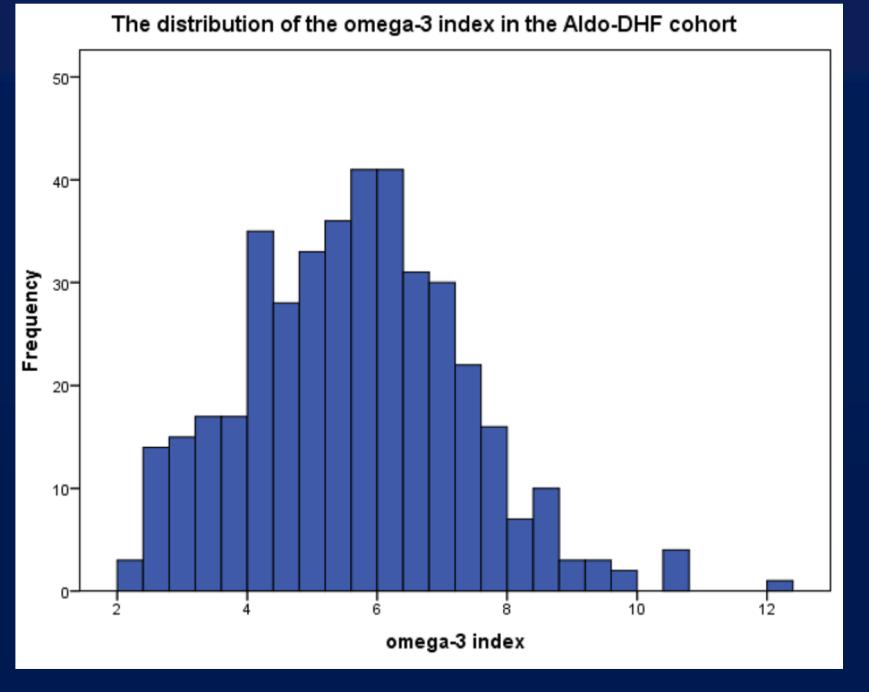

Baseline 3 Monate

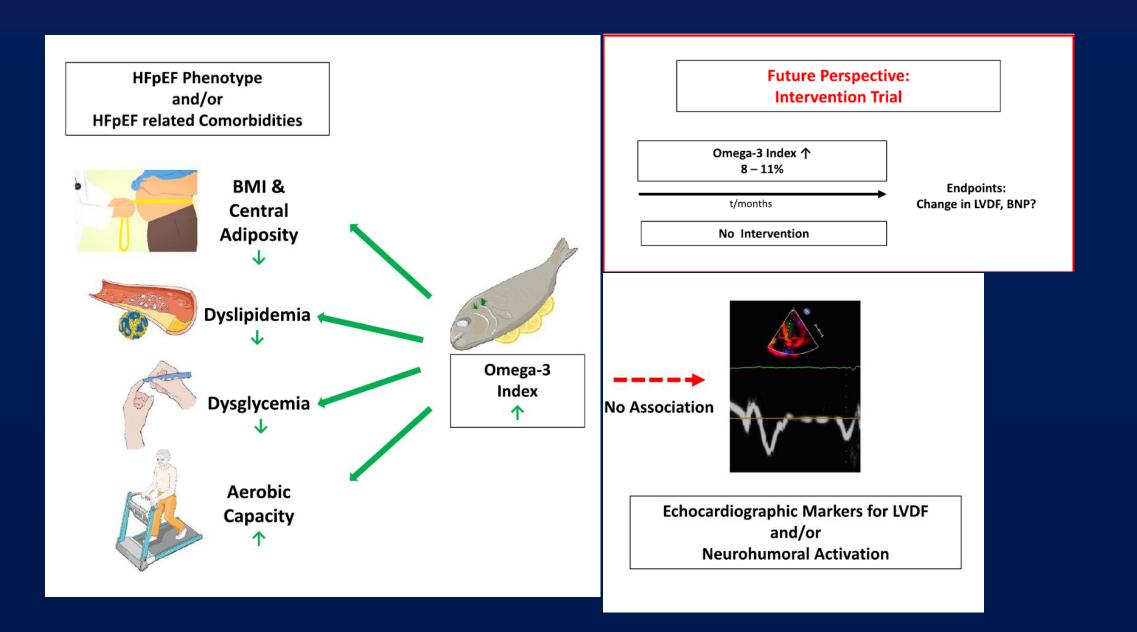
Placebo 4.73+1.70 4.81+1.49

Verum 4.75±1.68 6.73±1.93 p<0.0001

Deutlich unter Zielbereich 8 – 11%

GISSI-HF: Primärer Endpunkt




Aktuelle Meta-Analyse positiv für Rehospitalisierungen

Barbarawi et al, Contemp Clin Trials 2021,107:106458

GISSI-HF, Lancet 2008,372:1231

Herzinsuffizienz HFpEF

Zwischenzusammenfassung Herzinsuffizienz

HFrEF

Niedrige Spiegel von EPA und DHA mit späterem Auftreten von HFrEF assoziiert.

Niedriger HS-Omega-3 Index bei HFrEF.

Erhöhen des HS-Omega-3 Index reduziert Gesamtmortalität und Krankenhausaufnahmen

HS-Omega-3 Index im Zielbereich von 8 – 11% anstreben

HFpEF

Kein niedriger HS-Omega-3 Index

HS-Omega-3 Index mit besserem metabolischem Profil,

nicht mit diastolischer Dysfunktion assoziiert, RCT's nötig

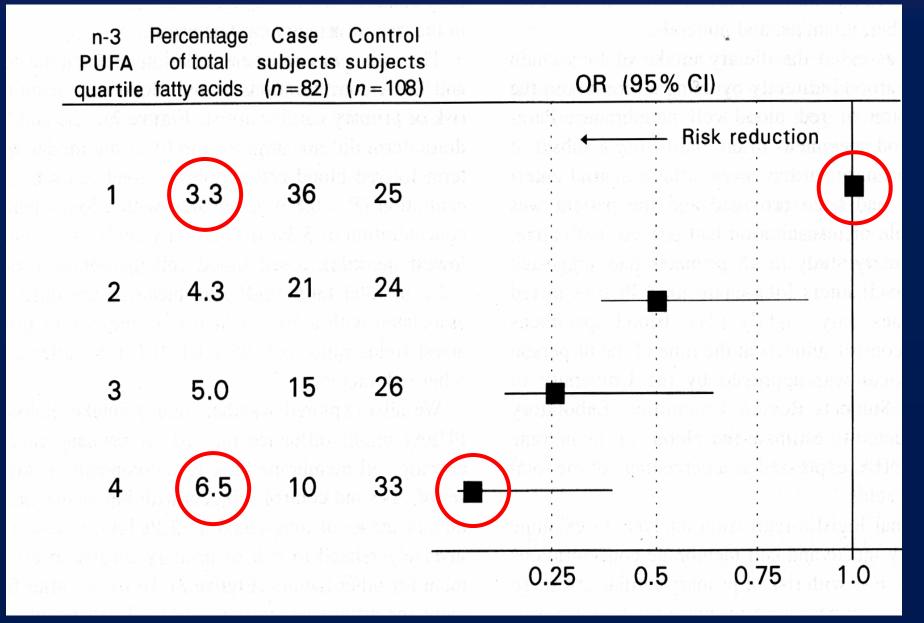
PS: größter Kostenfaktor in der stationären Versorgung

Plötzlicher Herztod

Plötzlicher Herztod

Deutschland: 80.000 Todesfälle / Jahr

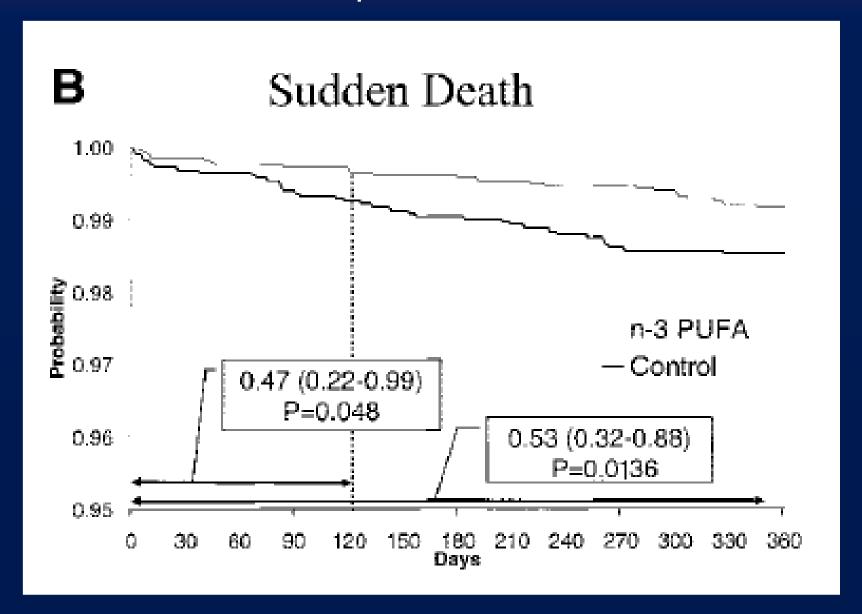
USA: 250.000 Todesfälle / Jahr


Der plötzliche Herztod ist damit eine der häufigsten Todesursachen der westlichen Welt.

EPA und DHA in Erythrozyten und plötzlicher Herztod

Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico

3.5 Jahre randomisiert, offen, multi-zentrisch, faktorielles Design, 11324 Pat kurz nach erstem MI

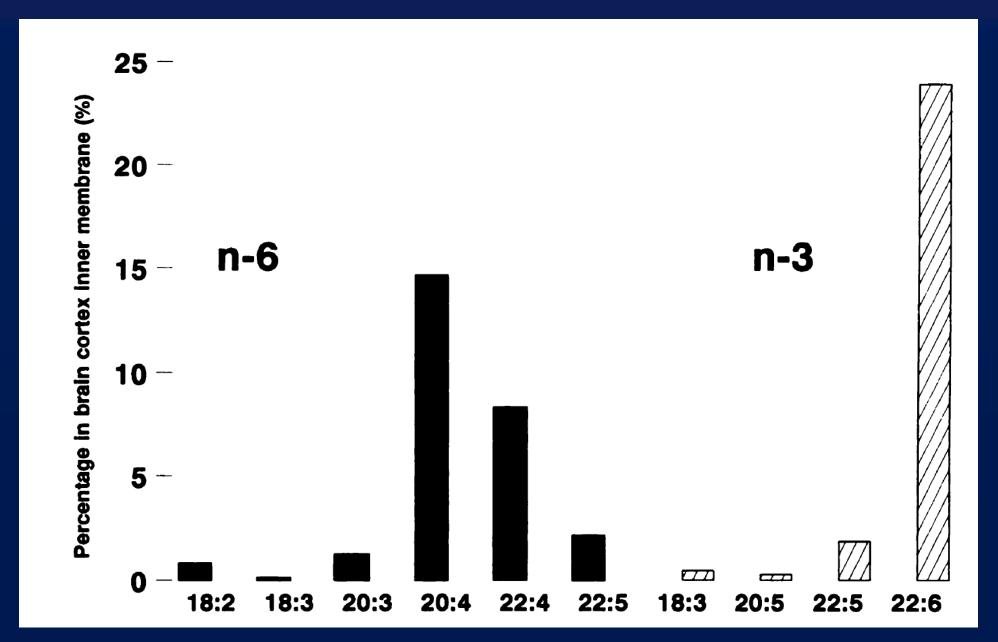

0.85 g ω-3 Fettsäuren / Tag

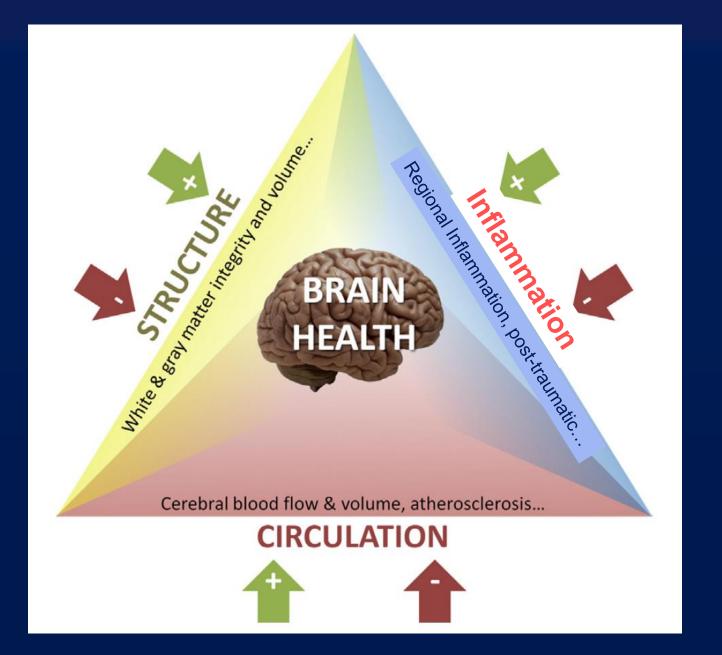
300 mg Vitamin E / Tag

Kombination

weder noch

Ca. 50 % Reduktion plötzlicher Herztod in GISSI-P



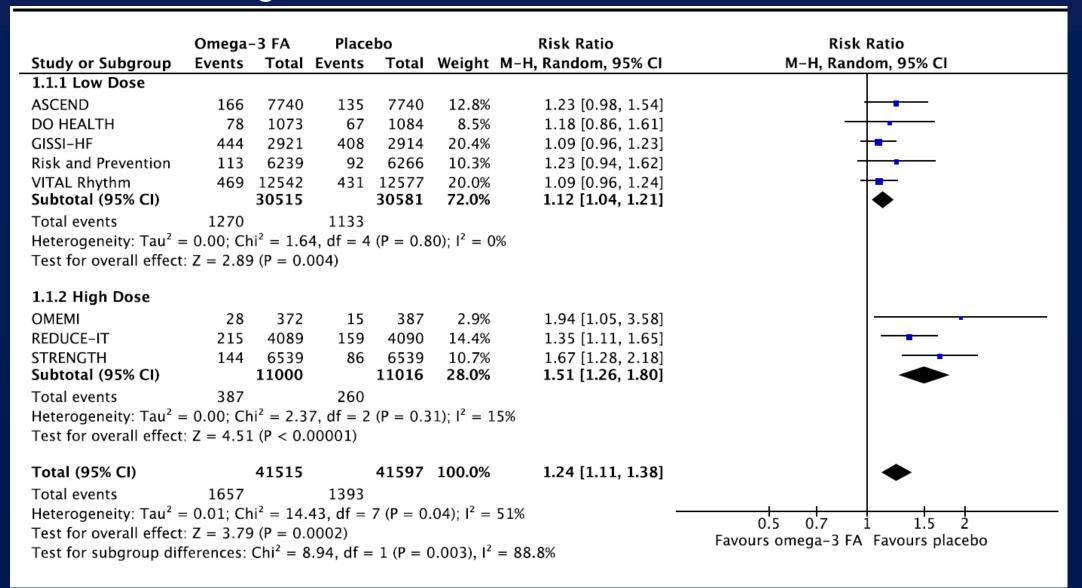

Zwischenzusammenfassung Plötzlicher Herztod

- Der plötzliche Herztod ist eine häufige Todesursache in Deutschland ca. 80 000 Tote / Jahr
- Der plötzliche Herztod tritt am häufigsten unvermutet in der Allgemeinbevölkerung auf
- Deswegen wurden viele AED's aufgestellt reduziert kaum den plötzlichen Herztod
- Konventionelle Ernährungsforschung kann aus methodischen Gründen hierzu
 - keine Erkenntnisse liefern
- Standardisierte Fettsäureanalytik: HS-Omega-3 Index lässt nicht nur relative sondern auch absolute Aussagen zu
- Niedriger HS-Omega-3 Index ein Risikofaktor für den plötzlichen Herztod National und Populations-bezogen (z.B. Athleten)
- Gabe von EPA plus DHA reduzierte den plötzlichen Herztod

Gehirn

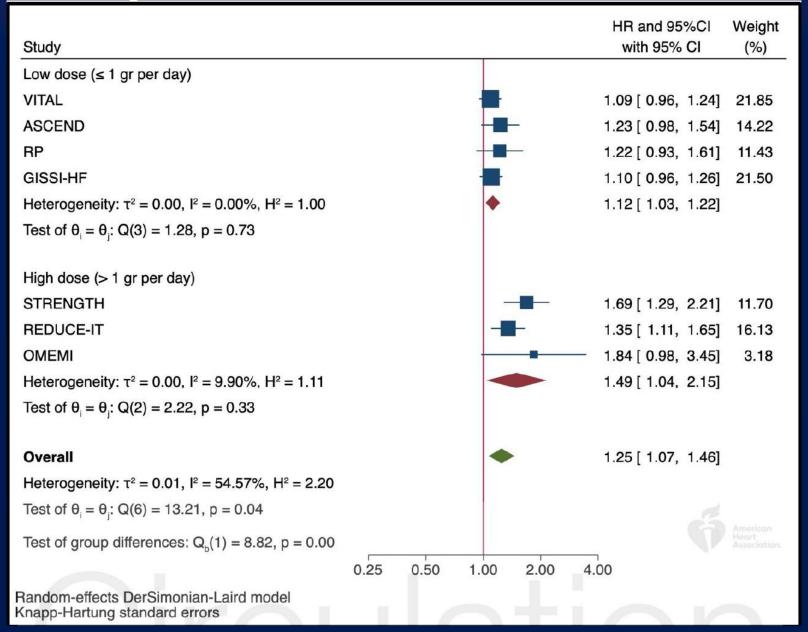
Fettsäuren im menschlichen Gehirn

Zwischenzusammenfassung Gehirn


DHA ist die wichtigste Strukturfettsäure im Gehirn EPA&DHA wichtig für Durchblutung, Entzündung Hohe Spiegel von EPA&DHA machen das Gehirn resistenter gegen Schäden wie Trauma, Feinstaub verlangsamen "altersbedingten" Hirnabbau Ein niedriger HS-Omega-3 Index korreliert mit Schlaganf. Erhöhen der Spiegel reduziert Schlaganfälle Ein niedriger HS-Omega-3 Index korreliert mit schlechter Kognition Erhöhen des Omega-3 Index bessert Kognition Ein niedriger HS-Omega-3 Index korreliert mit psychiatrischen Erkrankungen Erhöhen bessert Majore Depression, Wochenbettdepression, bipol. Depression, PTSB

Sicherheit und Verträglichkeit

JELIS: RCT in 19 466 Hyperlipidämiker, <u>+</u> kardiovask. Erkrankung, davon 9326 1,8 g / Tag EPA in Japan 9319 Kontrollen, Mittlerer Follow-up 4,6 Jahre.


	Control (n=9319)	EPA (n=9326)	pvalue
Common adverse experiences			
Pain (joint pain, lumbar pain, muscle pain)	180 (2.0%)	144 (1.6%)	0-04
Gastrointestinal disturbance (nausea, diarrhoea, epigastric discomfort)	155 (1.7%)	352 (3.8%)	<0.0001
Skin abnormality (eruption, itching, exanthema, eczema)	65 (0.7%)	160 (1.7%)	<0.0001
Haemorrhage (cerebral, fundal, epistaxis, subcutaneous)	60 (0.6%)	105 (1.1%)	0.0006
REDUCE-IT Blutungen (mittl. FU 4,6 Jahre)	: 2,1%	2,7%	

Omega-3 und Auftreten von Vorhofflimmern

Schlaganfallrisiko nicht erhöht: RR 1,04, 95%CI 0,90-1,20

Omega-3 und Auftreten von Vorhofflimmern

U-förmige Beziehung zwischen Omega-3 Index und Auftreten von Vorhofflimmern

 Table 4.
 Quintiles of RBC EPA + DHA among 355 patients undergoing cardiac surgery and ORs and 95% CI for POAF associated with each quintile

Quintiles	1	2	3	4	5
N	71	71	71	71	71
$EPA + DHA^a$ (range)	3.86-6.31	6.31-7.85	7.85-9.21	9.21-10.44	10.44-15.60
Cases of POAF (%)	29 (41)	30 (42)	32 (45)	26 (37)	43 (61)
OR ^b (Q1 as reference) ^c	1	0.77 (0.37-1.60)	0.88 (0.42-1.86)	0.46 (0.21-1.01)	1.09 (0.48-2.45)
OR ^b (Q with lowest risk as reference) ^d	2.16 (0.99-4.74)	1.68 (0.81-3.48)	1.90 (0.92-3.93)	1	2.36 (1.15-4.85)

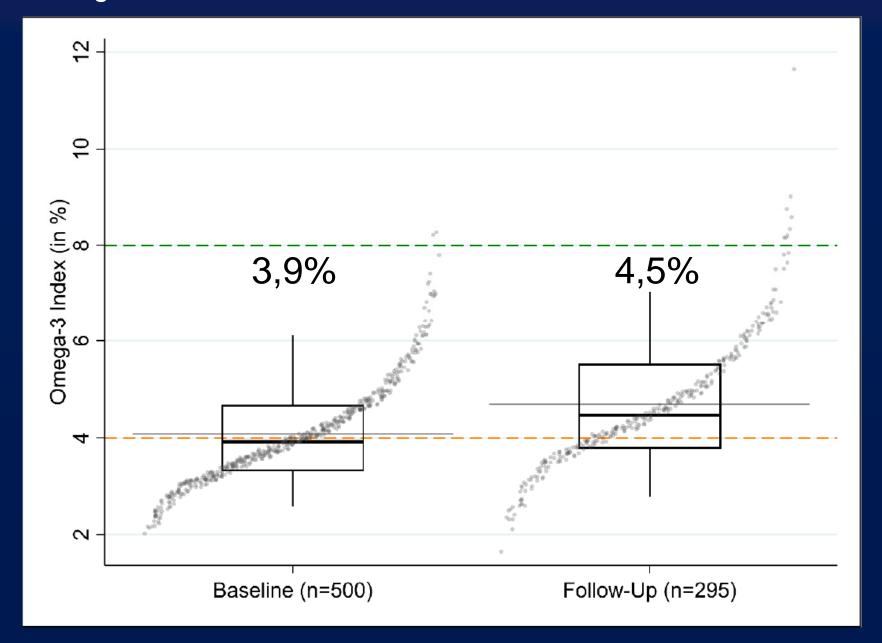
Minimales Risiko

HS-Omega-3 Index erhöhbar durch erhöhte Zufuhr.

EPA+DHA bis 5 g / Tag (EFSA)

bzw. 3 g / Tag (FDA)

Sicher.


Verträglichkeit und Bioverfügbarkeit maximal,

wenn mit Hauptmahlzeit aufgenommen.

HS-Omega-3 Index Zielbereich 8 – 11%: maximal sicher und effektiv.

Und wie?

HS-Omega-3 Index vor und nach 4 Monaten mehr Fisch in der Kantine

Zusammenfassung

- Biomarker für Status an EPA und DHA: HS-Omega-3 Index
- Ignorieren der Ausgangsspiegel und der komplexen Bioverfügbarkeit bedeutete viele neutrale Studienergebnisse
- Herz: Niedriger HS-Omega-3 Index mit erhöhter Gesamtmortalität, plötzlichem Herztod, tödlichen und nicht-tödlichen Herzinfarkten, HFrEF, usw. assoziiert.
 - Erhöhen HS-Omega-3 Index reduziert Ereignisse, besserer Verlauf
- Hirn: Höherer HS-Omega-3 Index weniger Hirnschäden durch Schlaganfall, Trauma Feinstaub usw., bessere Kognition, weniger psychiatrische Erkrankungen
 - Interventionsstudien positiv in allen genannten Bereichen
- Viele andere positive Auswirkungen eines HS-Omega-3 Index im Zielbereich von 8 11%
- EPA und DHA sicher und verträglich, insbesondere bei gezielter Gabe

Omega-3: Mythen vs. Fakten

Nutridays, 26. März 2022

Prof. Dr. C. von Schacky, FESC Omegametrix, Martinsried c.vonschacky@omegametrix.eu

